New insights in metamaterials lead to better implants, robot hands, and bumpers

February 3, 2026 – Metamaterials are composites with a very precisely controlled structure. It is this structure that determines the properties of the metamaterial, not the substances it is made of. Typically, a metamaterial consists of repeating identical blocks called unit cells. New research by PhD student Shyam Veluvali, Prof. Anastasiia Krushynska, and colleagues from the University of Groningen, UMCG, and Karlstad University in Sweden shows that the overall mechanical response of metamaterials depends on how many unit cells are joined together, and how they are arranged.
In their paper in the journal Small Structures, Veluvali and colleagues show how the size of the building blocks affects the simplest behaviour, such as elasticity. They also show that the number of blocks can affect the metamaterial properties. Furthermore, the more blocks are added, the easier it becomes to predict the structural behaviour of a metamaterial. These insights help to predict the mechanics of metamaterials, such as bone implants, with higher precision.
Examples of 3D printed metamaterial blocks with different unit cells, as studied in the paper (Image Shantanu Nath, University of Groningen)







